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Figure 1. Schematic representation of Gel electrophoresis
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The basic idea behind gel electrophoresis is to
separate molecules, based on their charge,
mass or shape with an electric field.
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DNA is negatively charged; it will
therefore move towards the cathode.
Longer strands of DNA will encounter more
resistance from the gel and move slower.
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Figure 2. Schematic representation of DNA migration in an electrical field
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Ladder :

A mix of known DNA
lengths used as a
calibration tool to
determine the length
of strands of interest
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Figure 3. Schematic representation of DNA bands
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=F*L Polymerase Chain Reaction

For his invention
of PCR in 1983,

Key Idea from Mullis :

DNA is replicated by enzymes within each cells, why not
Kary Mullis received

the 1993 Nobel Price

do it directly in a test tube ?

in chemistry with

Michael Smith.

Figure 13.17 (Campbell, 2017) o"gin of [ep"caﬁon

Kary Mullis

Figure 4. Schematic representation of DNA replication (Campbell, 2017)
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Polymerase Chain Reaction

Science behind it

THEORY
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DNA is mixed in a buffer solution with DNA polymerase,

primers, and DNA building blocks (dNTP)

« Denaturation: heat splits apart the two strands of DNA

 Annealing: primers stick to the target bases and mark

the boundaries of the zone that will be replicated

« Extension: DNA polymerase moves from the primers to

the end of the strand, fastening complementary bases

DNA is doubled for each cycle, making it a chain reaction
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Figure 5. Schematic representation of PCR
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*F*LDNA Polymerase

The denaturation process damages regular

DNA polymerase. At first DNA pol had to be added after
each cycle, until a thermostable DNA pol was discovered. first discovered in a hot
This allowed the automation and continuous run of PCR
cycles.

Thermus Aquaticus

Is a thermophilic bacteria, P&

spring of Yellowstone park.

This chemotroph grows optimally at 70°C
thanks to its thermo-stable enzymes.
Being able to withstand temperatures of
95°C (t;, 40min), the Tag polymerase is

especially useful for PCR.

DNA polymerase | Tag Polymerase
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PCR lab
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Figure 6. Schematic representation of gPCR standards
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gPCR is used in many fields

13

Research Medicine Forensics

= @ P

Detection of viruses and bacteria since it allows many targets in one PCR
It gives information about the abundance and diversity of microorganisms

Gene expression levels ~

)
It can use specific primers to target genes of interest
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ORIGINAL ARTICLE

Linking N,O emissions from biochar-amended soil

to the structure and function of the N-cycling
microbial community

Johannes Harter'#, Hans-Martin Krause'®, Stefanie Schuettler'!, Reiner Ruser?,

Markus Fromme?, Thomas Scholten®, Andreas Kappler' and Sebastian Behrens?®
'Geomicrobiology and Microbial Ecology, Center for Applied Geosciences, University of Tuebingen,
Tuebingen, Germany; *Fertilisation and Soil Matter Dynamics, Institute of Crop Science, University of
Hohenheim, Stuttgart, Germany and *Soil Science and Geomorphology, Department of Geography, University

of Tuebingen, Tuebingen, Germany

Nitrous oxide (N:O) contributes 8% to glabal greenhouse gas emissions. Agricultural sources

N ions. Most agricultural N.O emissions are due to
n. A considerable fraction of nitrogen fertilizers are converted to N.O by
microbiological processes (that is, nitrification and denitrification). Soil amended with biochar
(charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve
soil quality and affect greenhouse gas emissions, for example, reduce N.O emissions. Despite
several studies on variations in the general microbial community structure due to soil biochar
amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil
N;O emissions has not been subject of systematic investigation. We performed a microcosm
study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of
high-temperature biochar. By quantifying the abundance and activity of functional marker genes
of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nos2)

using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reducnon
and increased the abundance of microorganisms capable of N.-fixati Soil bioch

increased the relative gene and ti ipt copy bers of the nosZ—encaded bacterial N.O
reductase, suggesting a mechanistic link to the observed reduction in N;O emi Our findi

contribute to a better understanding of ihe impact of biochar on the nitrogen cycling microbial
d t for mi ial nitrogen transformation

community and the consequences of soil b
pr and N;O issi from soil.

The ISME Journal (2014) 8, 660-674; doi:10.1038/isme].2013.160; published online 26 September 2013

Subject Cat hinl

o

y: Geomict gy and microbial contributions to geochemical cycles

Keyword5 nitrogen cycle; blochar, denitrification; nitrification; nitrous oxide; nesZ N,O emission;

greenhouse gas; soil microbial community

Motivation: Understand the specific role of the
nitrogen cycling microbial community in

mitigating soil N,O emissions

Objective: Quantify responses of functional
genes to soil biochar amendments; Using

functional genes as a proxy of N,O emissions

Methodology: qPCR to determine the
abundance of key functional marker genes

(@amoA, nirS, nirK, nosZ and nifH)
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Figure 7. Schematic representation of N-cycle and functional genes involved
(PhD thesis Griffith., 2016)
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nifH gene copy n° were consistently higher in

!
) F l | | P— ——)> the treatment microcosms compared with the
il. ?_&E?ﬁé:;:ummm 10# !{_{" - ContrOI

No significant differences between control and
biochar-amended for the archaeal and bacterial
amoA gene data
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o E] 2 4 b [

nirS and nirK did not show significant
differences between treatment and control

Significantly higher nosZ gene copy n°
treatment compared to control were quantified
im0 ’ at day 15

Figure 8. Gene copy numbers per gram dry soil over time for various key genes of microbial
nitrogen transformation processes (Harter et al., 2013, The ISME Journal (2014) 8, 660—674)
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Conclusions

* Biochar changed the denitrifier microbial community composition by promoting the
growth

+ gPCR demonstrates that these functional genes could be used as a proxy of N,O
emissions from biochar-amended soll

 Results are valid under controlled conditions, which differ from those in the field.
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EPFL qPCR
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nth cycle

PCR product
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